Mathematics and Explanatory Generality:
A Nominalist Analysis

Robert Knowles and Juha Saatsi*

11th January 2018

Abstract

We identify a little-acknowledged but widely shared assumption at the
heart of the debate surrounding the enhanced indispensability argument: that
explanatoriness is just a matter of faithfully representing explanatory features
of reality. We argue that this assumption is mistaken by providing a detailed
counterfactual analysis of explanatory generality: the explanatory virtue for
which mathematics indispensably contributes to in ‘distinctly’ mathematical
explanations. In our analysis mathematics makes such explanations better
by rendering non-mathematical explanatory information cognitively easier
to grasp. The counterfactual framework of our analysis enjoys independent
support in a way that offers a naturalistic, non-question-begging nominalist
response to EIA, enabling us yto push past the long-standing impasse that
has stifled the EIA debate.

1 Introduction

In this paper we provide a nominalist analysis of the explanatory generality of
‘distinctly’ mathematical explanations of empirical phenomena. This allows us to
push past the clear impasse currently stifling the debate surrounding the ‘enhanced’
indispensability argument (EIA). It will also fill two significant lacunas in this long-
standing debate.

According to EIA (standard) scientific realists should be platonists. This ar-
gument is driven by the fact that some of our best explanations of certain empir-
ical facts are ‘distinctly’ mathematical explanations, which seem to turn on gen-
eral mathematical facts. (We will recall standard examples of such explanations
shortly.) Although alternative, nominalistically kosher explanations can always be
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offered, arguably such alternatives are less good qua explanations; hence, a real-
ist who infers to the best explanation cannot but accept a realist commitment to
whatever the explanatory mathematical facts involve. So goes the most prominent
naturalistic argument for mathematical platonism (e.g. Baker 2005; Colyvan 2002,
2013; Lyon 2012).

In response to EIA, nominalists can either deny that mathematical explanations
are truly better than nominalistic alternatives, or they can deny that mathematics’
indispensable explanatory contribution is ontologically committing. We agree with
the near-consensus that the first horn is implausible in the face of the broadly shared
judgment that mathematical explanations can be clearly better (qua explanations)
than any nominalistically expressible alternative. The second horn has been pop-
ular amongst the nominalists, but here the debate has reached an impasse. While
the platonists take mathematics’ explanatory indispensability as an indication that
there exist explanatory mathematical features of reality, nominalists take mathem-
atics to play a merely representational or expressive role for making claims about
non-mathematical features of reality that do the ‘real’ explanatory work. On the
one hand, drawing such a distinction between ‘really explanatory’ and ‘merely rep-
resentational’ can only be fairly done on some principled, non-question-begging
grounds.! On the other hand, the indispensability of mathematics for providing
an explanation is not enough in and of itself to convince the nominalist that the
explanatoriness of this explanation (partly) springs from correctly (re)presenting
mathematical features of reality. As many have noted, the debate has here reached
a serious impasse (e.g. Baker 2017: 2; Knowles and Liggins 2015: 3403-7). The
result is predictable: intuition trading, subtle dialectical manoeuvering, and charges
of question-begging.

In this paper, we will break through this impasse in favour of nominalism by
addressing two significant lacunas in the debate. One lacuna has to do with the cur-
rent lack of understanding of how distinctly mathematical explanations are better
qua explanations—deeper, more powerful, more explanatory—than nominalistic
alternatives. Relatively little has been said about this critical issue apart from the
frequent platonist assertions that mathematics is indispensable, in particular, to the
most general explanations of some empirical phenomena.

Mathematics’ connection to explanatory generality has been explicitly drawn
by Alan Baker (2017), for example, but the general idea goes back for more than

"For example, Saatsi (2016b) draws an interesting distinction between ‘thin’ and ‘thick’ explan-
atory roles, arguing that a nominalist can make sense of mathematics’ explanatory indispensability
by maintaining that mathematics only plays a ‘thin’ role of “allowing us to grasp, or (re)present,
whatever plays a thick explanatory role” (p. 12) Notwithstanding the conceptual room for Saatsi’s
distinction, platonists can rightly query why the explanatory superiority of distinctly mathematical
explanations is best analysed in these terms.



ten years. For example, Mark Colyvan (2002) defends EIA against Joseph Melia
(2000) by noting that mathematics is indispensable for a ‘unified approach’ to
presenting and solving disparate scientific problems, and hence ‘genuinely explan-
atory’ (p. 72), since ‘unification is linked to explanatory power’. Alan Baker and
Colyvan (2011) defend EIA by noting that any nominalized explanation of cicada
periods is ‘both less general and less robust’ (p. 331). Colyvan (2013) defends EIA
against Yablo (2013) by arguing that Yablo’s approach doesn’t do justice to the uni-
fying power of mathematics (p. 1042). Matteo Plebani (2016) objects to Liggins’
(2016) response to EIA by arguing that Liggins’ approach renders our scientific
explanations ‘at the wrong level of generality’ (p. 553). The notion of ‘explanatory
generality’—together with cognate notions of ‘unification’ and ‘robustness’—has
thus been absolutely central to the platonist reasoning that there exist explanatory
mathematical features of reality. The way in which mathematics makes explana-
tions better by making them more general raises a distinct challenge for nominal-
ists: how does mathematics improve explanations, if not by capturing explanatory
mathematical features of reality? Call this the challenge from explanatory gen-
erality.

Making this challenge explicit highlights the two little-noted lacunas we are
concerned with: first, nominalists have hitherto not responded to this challenge
head-on; second, neither side has provided a detailed, satisfactory account of ex-
planatory generality, and how exactly mathematics contributes to it.> We will ad-
dress both lacunas by analysing explanatory generality in the context of a more
general, independently well-motivated counterfactual framework for comparing
explanatory virtues. The general motivations (independent of the EIA debate)
for adopting this framework for analysing distinctly mathematical explanations
provide the principled, non-question-begging grounds for our nominalist verdict
that drops out of this analysis.

In addition to thus breaking the serious impasse surrounding EIA, our ana-
lysis instructively highlights and undermines a common, but seldom recognised
assumption made by both sides of the EIA debate regarding explanatoriness in
general: that explanatoriness is just a matter of faithfully representing explanatory
features of reality. Call this assumption ‘explanatoriness through representation’
(ETR). Insofar as both sides accept ETR, platonists can challenge the nominalists
by reference to mathematical explanations that are judged to be more explanatory
than nominalistic alternatives: by ETR, the difference in explanatoriness must be
due to the mathematical explanations’ representing explanatory features of reality

20On the platonist side, Aidan Lyon (2012) has framed the explanatory ‘robustness’ of mathem-
atical explanations in terms of the ‘program explanation’ model of Jackson and Pettit (1990). See
Saatsi (2012, 2016) for criticism.



that their nominalistic alternatives do not, and nominalists are thereby challenged
to say what those features are (if not mathematical features). Our analysis reveals,
however, that nominalists need not accept the idea that some of our best, most
general explanations make indispensable use of mathematics by virtue of those
explanations representing explanatory features of reality that any nominalistic al-
ternatives leave out. Rather, nominalists can maintain that distinctly mathematical
explanations are best by virtue of maximising the explanatory information they
provide to cognitively limited beings (such as ourselves), which is a function both
of the amount of such information the explanation provides about relevant worldly
features, and of the way in which this information is presented. In the explanations
we consider, mathematics contributes to explanatoriness via the latter parameter,
in a way that is fully compatible with nominalism.

To arrive at this conclusion we will first offer a primer on explanatory gen-
erality and distinctly mathematical explanations in §2. We will then provide an
independently motivated background theory for analysing explanatory generality
in §3. Drawing on this, we will in §4 analyse mathematics’ contribution to explan-
atory generality in distinctively mathematical explanations. In §5, we defend our
analysis against three objections, before concluding in §6 that mathematics’ ex-
planatory contribution via explanatory generality is not ontologically committing.

2 Explanatory generality and distinctly mathematical ex-
planations

What kinds of explanations does the challenge from explanatory generality in-
volve? There are two desiderata. Firstly, given that this challenge turns on math-
ematics increasing explanatoriness in comparison to nominalistic alternatives, the
explanations at stake should allow for a comparison of mathematics-laden and
mathematics-free formulations. Secondly, the explanations at stake should make
it difficult for the nominalist to identify non-mathematical features of the world
as underwriting the increase in explanatoriness (as required by ETR). Both desid-
erata are met by examples familiar from the EIA literature, such as the number-
theoretic explanation of cicada periods, and the graph-theoretic explanation of the
non-traversibility of Konigsberg’s bridges. These explanations can be compared
to nominalistic alternatives, yet there is clearly something ‘distinctively’ mathem-
atical about them (cf. Lange 2013), in a way that suggests they turn on general
mathematical facts that transcend physical features.

A simple toy-example illustrates this. A philosopher tries to divide twenty-
three distinct ideas evenly among three sections, but keeps failing. Why? Because
twenty-three is not divisible by three. This is a ‘distinctively’ mathematical ex-



planation, since the explanandum is not due to contingent laws of nature (causal or
otherwise), but holds with a stronger degree of (mathematical or logical) necessity
(Lange 2013).

Such explanations exhibit striking generality, in at least two different senses.
First, the explanation clearly has nothing to do with the nature of the things being
divided, apart from the stipulation that we are concerned with distinct individuals.
Thus, the arithmetical statement at the heart of the explanation equally explains
why mother cannot divide twenty-three strawberries evenly among her three chil-
dren. In this way, the explanation is extremely topic general. To achieve this, the
explanation must abstract away from what kinds of things are being divided. The
arithmetical formulation achieves this admirably.

Secondly, the mathematical explanation is naturally equipped to provide an-
swers to counterfactual questions of the following sort: what if things were different
so that the philosopher had (say) twenty-one (as opposed to twenty-three) distinct
ideas to convey? What if she had fifteen ideas? Three-thousand-and-fifteen? As
far as the explanation is concerned, there is nothing special about twenty-three, as
opposed to any other positive integer not evenly divisible by three. In this sense,
the explanation is extremely scope general: it allows us to consider any natural
number n as a possible value of the explanans variable quantifying the number of
things being divided. The arithmetical formulation readily facilitates this abstrac-
tion from what actually happened.

In the context of EIA, these two kinds of generality are distinguished by Baker
(2017). However, Baker doesn’t offer a detailed analysis, which requires a back-
ground theory. We provide a background theory next.

3

3 Background Theory and Methodology

Mathematics’ contribution to explanatory power is best analysed in relation to well-
formed ideas about the nature of scientific explanation: figuring out what makes
competing explanations more or less powerful requires a prior understanding of
what explanatory power is. Accordingly, we will appeal to the counterfactual ac-
count of mathematical explanations. This will yield a robust understanding of ex-
planatory generality and allow us to locate mathematics’ role as a generator of this
explanatory virtue.*

3Cf. Jansson and Saatsi (forthcoming) and Baker (2017). Here we follow Baker’s terminology.

*We will not argue here further for the counterfactual account vis-a-vis ‘distinctly’ mathematical
explanations. If one does not like this account, one should provide an alternative analysis of these
explanations and mathematics’ contribution therein (cf. §6). The secondary message of our paper
still stands: explanations’ ontological commitments can properly be determined only in the context
of a sufficiently well-formed account of explanation.



Before reviewing the counterfactual account, let us pre-empt some worries
about our modus operandi. Are we begging the question against the platonist?
Are we ruling out by fiat certain kinds of explanatory contributions of mathematics
by shoehorning distinctly mathematical explanations into a particular account of
explanation?

No. We operate in a naturalistic (Quinean) spirit, appropriate for the dialectic
of EIA. By adopting an account of explanation that is well-motivated by recent ad-
vances in the philosophy of explanation, we are approaching the debate in the light
of all available evidence, including evidence that independently supports this ac-
count of explanation. This evidence is not meant to trump opposing considerations
regarding the explanatory role of mathematics: we can study mathematics’ explan-
atory contributions with an open mind when considering the evidence adduced in
support of EIA. (If the counterfactual account does not capture some convincing
example of mathematical explanation, or some clear explanatory virtue, we will
need a different account.) Thus, we aim to balance a philosophical account of ex-
planation and its overall support with more specific issues regarding mathematical
explanations.

Bringing more evidence to bear on the debate is desirable. A widely acknow-
ledged challenge here is to avoid mere trading of intuitions (as noted, e.g., by Baker
2017: 2). We can achieve this by providing independent evidence for our analysis
of crucial notions, such as explanatory generality. Various selling points of the
counterfactual account support this, assuming it allows us to make sense of the
explanations at stake. We thus profitably connect the ontological issue to broader
debates in the philosophy of science by allowing our analysis of mathematics’ ex-
planatory contributions to be informed and supported by evidence for the relevant
account of scientific explanation.’

Moreover, the counterfactual account makes room for the (anti-)nominalism
debate. On the one hand, it is a broadly ontic account of explanation, so it does
not jettison the issue of explanations’ realist commitments (cf. Saatsi 2016). Ontic
accounts take an explanation’s explanatory power to at least partly derive from its
latching onto worldly things that bear an objective, explanatorily relevant relation
to the explanandum. On the other hand, the counterfactual account is not com-
mitted ETR, nor the claim that successful explanations wear their commitments
on their sleeves (Bokulich 2016, Woodward 2003, Potochnik forthcoming). Ex-
plaining is a human activity, the goal of which is the provision of explanatory
understanding. This introduces epistemic and pragmatic aspects to explanation.

SSupport for the counterfactual account involves its ability to make sense of various kinds of ex-
planations and of comparative degrees of explanatory power, as we will discuss. It also enjoys natur-
alistic support from, e.g., cognitive psychology, which we will not discuss here. (See e.g. Buchsbaum
et al. 2012.)



Finally, the counterfactual account does not rule out an explanation’s having
platonistic commitments. It need not render mathematical explanations causal.
(This would beg the question against the platonist.) Although initially developed
as an account of causal explanation, the counterfactual account has been extended
to various non-causal explanations, including those of the distinctly mathematical
kind (Reutlinger 2016, forthcoming; Saatsi 2016; Baron et al. 2017; Jansson and
Saatsi 2016; French and Saatsi forthcoming). There is also nothing in the counter-
factual account that rules out mathematical objects or properties bearing objective,
explanatorily relevant relations to physical explananda.

We can now briefly review the counterfactual account. At the heart of the
account is the idea that explaining is a matter of providing information of system-
atic patterns of counterfactual dependence. Explanatory counterfactuals are ap-
propriately directed and change-relating, capturing objective, mind-independent
modal connections that show how the value of the explanandum variable depends
on the value of the relevant explanans variable(s). These variables stand for suit-
ably conceptualised and individuated worldly features. Explanatory counterfactu-
als provide ‘what-if-things-had-been-different’ information, indicating how the ex-
planandum would have been different, had the explanans been different. Explanation-
supporting relations—nomological, causal, or mathematical—between the vari-
ables can provide this kind of modal information.

Importantly, an account of explanation built on this idea allows us to cap-
ture shared intuitions regarding the comparative virtues of different explanations
in terms of the counterfactual information provided by them. If explaining is a
matter of providing information that answers what-if questions, then it is natural
to regard as more powerful those explanations that provide more such answers
(with respect to a given explanandum). This simple idea has rich and non-trivial
consequences regarding the various ways in which explanations can be better or
worse. Detailed analyses of explanatory power in this spirit have been provided
(see Hitchcock and Woodward 2003, and Ylikoski and Kuorikoski 2010). Here we
follow the latter authors, who identify five different aspects of explanatory power:
non-sensitivity, precision, factual accuracy, degree of integration, and cognitive sa-
lience. The three that will be relevant for our analysis of explanatory generality in
84 are the following.

Non-sensitivity: The range of values that the explanans variables can take without
breaking the explanatory relationship. For instance, an explanation of tides in terms
of Newton’s gravitational law has a considerable degree of non-sensitivity with re-
spect to the specific masses and locations of the sun and the moon: the explanation
correctly answers a considerable range of what-if questions for non-actual values



of these variables. This captures what we called scope generality in §1. In the
toy-example, this was a matter of the explanation allowing us to consider a range
of natural numbers n as possible values of the explanans variable that quantifies
the number of things being divided.

Degree of integration: The connectedness of an explanation to other theoret-
ical frameworks. From the counterfactual perspective, such integration is an ex-
planatory virtue when it enlarges the range of what-if questions answerable with
respect to particular explananda, or makes such questions easier to answer. One
way theoretical integration can achieve this is by equipping explainers with new
inferential resources (Ylikoski and Kuorikoski 2010). For example, the integration
of pressure-wave acoustics to a more general mathematical theory of wave phe-
nomena allowed new what-if questions to be asked and answered about sounds
waves, increasing explanatory understanding of various sound phenomena (Pierce
1989). In our toy-example, the explanation is integrated into arithmetic, which
equips explainers with the inferential resources to easily answer a wide range of
what-if questions with respect to the particular explananda to which the arithmetic
is applied.

Cognitive salience: ‘[T]he ease with which the reasoning behind the explana-
tion can be followed, how easily the implications of the explanation can be seen
and how easy it is to evaluate the scope of the explanation and identify possible
defeaters or caveats’ (Ylikoski and Kuorikoski 2010: 215). Actual explainers are
human beings with limited cognitive capacities, and these limitations partly de-
termine which explanations are more or less explanatory by virtue of differing in
their capacity to enable explainers (with particular training, background know-
ledge, etc.) to draw counterfactual inferences for different values of the explanans
variables. In our toy example, the arithmetical presentation is highly cognitively
salient in this way for anyone equipped with a basic background in arithmetic. A
purely logical statement that twenty-three distinct individuals are not divisible into
three equinumerous collections would not be cognitively salient in the same way,
for example (cf. §4).

4 How Mathematics Contributes to Explanatory Gener-
ality
We are now in position to analyse mathematics’ contribution to the scope and topic

generality of distinctively mathematical explanations. In §4.1, we will argue that
mathematics’ indispensability in the procurement of scope generality is a matter



of improving cognitive salience. In §4.2, we will argue that mathematics may
not be indispensable at all for achieving fropic generality; moreover, increasing
the topic generality of a particular explanation does not make it more explanatory,
unless it thereby increases scope generality. Hence, mathematics’ usefulness as an
explanatory resource turns out to be matter of improving cognitive salience.

4.1 Scope generality

Consider the arithmetical generality at the heart of the toy-example:
(A) There is no n such that 23/3 = n.

The numeral ‘23’ represents the number of ideas the philosopher has, and this can
be substituted for other numerals representing different ‘initial conditions’. The
scope generality of the explanation corresponds to its range of applicability with
respect to the different numbers of ideas the philosopher might have. Consider
an explanation that only captures the dependence of the value of the explanandum
variable (successful-division-into-three / unsuccessful-division-into-three) on the
value of the explanans variable (number of individuals) for twenty-two to twenty-
four individuals. Such an explanation gets right that it is impossible to divide
twenty-three things evenly into three, and that the philosopher would succeed if
there were twenty-four things to begin with. But these tidbits notwithstanding,
the explanation is shallow because it fails to capture the much broader-ranging
explanatory regularity at stake. For example, if one philosopher tries to divide
twenty-three individuals into three, and another tries to divide three-hundred-and-
four, they both fail for the same fundamental reason: neither set is evenly divisible
by three. We do not have one explanation for one case, and another for the other; we
have one explanation, supported by one explanatory regularity, and two different
initial conditions.

As discussed in §3, scope generality corresponds to an explanation’s non-
sensitivity. This conception of scope generality naturally rides on the back of
the idea—at the heart of the counterfactual account—that explanations work by
presenting an explanatory relationship that connects the explanandum to the ex-
planans, showing how the former depends on the latter by virtue of providing true
what-if information (regarding the state of the explanandum) for at least some
non-actual values of the explanans variable. The larger the range of non-actual ex-
planans variable values that are truthfully captured by the explanatory relationship,
the less sensitive the application of the explanation is to the actual values of these
variables—that is, the more scope-general it is.

With this understanding of scope generality in mind, how does mathematics
contribute to it, and in what sense is its contribution explanatorily valuable? (A)



allows for a maximally scope-general explanation: there is no limit to the number
of individuals it can take as the value for the explanans variable. One might think
that this in and of itself renders the mathematical explanation most explanatory. We
regard this diagnosis as overly simplistic. Rather, we should say that an increase in
scope generality is explanatorily valuable only to the extent that it (i) covers situ-
ations in which we could reasonably be interested, given the explanandum at stake,
and (ii) allows us to grasp the explanatory regularities the explanation tries to cap-
ture. In our toy-example, the explanatory generalisation (A) massively overshoots
with respect to achieving (i) and (ii). For example, the explanation tells us whether
the philosopher would be successful in all situations in which the number of ideas
exceeds the number of atoms constituting the earth. These situations are not only
bizarre; reflecting on them (in addition to the more reasonable scenarios) provides
no further information of explanatory relevance to the explanandum at stake.

If this is right, increasing scope generality can only improve an explanation
up to a point, which means maximising scope generality is not in and of itself ex-
planatorily valuable. This also means that mathematics is not indispensable for
generating a desirable level of scope generality. After all, we can in principle state
without mathematics the explanatory dependence between the values of explanan-
dum and explanans variables up to the desired point. Suppose we do this for all
possible numbers of ideas up to one exceeding the number of atoms constituting
the earth, illustrated by the following:

(A’) If there is exactly one idea, then the philosopher will not be able
to divide it evenly among three sections and,y if there are ex-
actly two ideas, then the philosopher will not be able to divide
them evenly among three sections... and g , 1gso) if there are ex-
actly 3 x 10°° ideas, then the philosopher will be able to divide
them evenly among three sections.®

Even though the explanation based on (A’) scopes way beyond any reasonable
scenario involving a philosopher writing a paper, and achieves the desired level of
scope generality, we agree with the platonists that the explanation turning on (A)
is really more explanatory. But we do not think this is due to mathematics further
increasing or maximising scope generality.

Rather, the (A)-explanation is better because it achieves the desired level of
scope generality without compromising cognitive salience. Consider how long and
cumbersome the nominalistic explanation would be. Presenting and using such
an explanation to answer what-if questions concerning particular counterfactual

®This can be written, mathematics-free, with first-order logic plus identity.
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situations would be unduly difficult. By contrast, (A) makes the same explanat-
ory information transparent, and affords a simple means of answering the desired
range of what-if questions: just plug in the appropriate numeral and calculate. The
explanation turning on (A) also avoids the feeling that, though there is no explan-
atorily relevant information to be gained by using (A) to answer what-if questions
concerning numbers of ideas greater than the number of atoms constituting the
earth, there is something arbitrary about stopping the explanation there (or any-
where else). But note that none of these virtues that make the (A)-explanation
more explanatory are due to (A) containing explanatorily relevant information that
cannot be in principle presented without mathematics. Rather, they are due to
its presenting the relevant information in a better way. Hence, the indispensable
contribution that mathematics makes in relation to scope generality is a matter of
improving—indeed maximising—cognitive salience.’

(Recall, this is not to deny that the explanation turning on (A) contains more
information regarding what would happen if the explanans variable values were
different. It clearly does: there is no finite limit to the range of possible explanans
variables we can plug into (A). What we deny is that, past a certain, reasonable
point, this information is of any explanatory value. In other words, we deny that an
increase in scope generality is always, in and of itself, an increase in explanatori-
ness.)

Let’s consider this analysis in relation to a less toy-ish example. North-American
periodical cicadas lie dormant for 13 or 17 years (depending on the subspecies).
Why the prime numbers? Because an organism which lies dormant for a prime
number of years minimises the frequency of overlaps between their emergence and
the emergence of nearby periodical predators (assuming these nearby predators
have life-cycles of between 2 and 12 years).?

In the counterfactual framework, this explanation turns on grasping how the
fitness-maximising cicada life-cycles—construed as a variable that can take dif-
ferent values—depends on other biologically relevant variables, such as predator
species’ life-cycles. Roughly speaking, the explanatory counterfactuals capture the
dependence of long-run evolutionary outcomes, regarding specific life-cycle peri-
ods, on the existence of predator species with life-cycles of nearby periods, as well
as ‘ecological constraints’ that appropriately limit the range of viable possibilities.
These counterfactuals are underwritten by an explanatory generalisation. Math-

"From the perspective of the counterfactual account this is unsurprising, and far from being an
idiosyncratic feature of mathematical explanations. See, e.g. Ylikoski and Kuorikoski (2010: 214-
215), who argue quite generally that an explanation can improve in terms of its cognitive salience
without an increase in explanatory information.

8This follows Baker (2005); see Wakil and Justus (forthcoming) for worries, which are irrelevant
for our argument and analysis.
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ematics again comes to play an indispensable role in the formulation of the most
powerful explanatory generalisation. To see how, consider the following general-
isations, each increasing in scope:

(a) Of time periods 12 to 18 years long, 13- and 17-year periods minimise inter-
section with all periods shorter than 12 years.

(b) Of time periods 12 to 18 years long, 13- and 17-year periods uniquely min-
imise intersection with all periods shorter than 12 years, and, of time periods
16 to 22 years long, 17- and 19-year periods uniquely minimise their inter-
section with all periods shorter than 16 years.

(c) If p is any natural number, then p maximises its least common multiple
(LCM) with every ¢ < p iff p is prime.’

Explanatory generalisations (a) and (b) are nominalistic, while (c) is not. The
actual biological explanation relies on (c). We think (along with the platonists) that
the explanation turning on (c) is truly more explanatory than any of those turning
on a finite nominalistic generalisation. Why? Note first that mathematics is not
necessary for increasing scope generality here: the explanation turning on (b) is
more scope-general than the explanation turning on (a), and we can further increase
scope generality with explanatory generalisations of the same (nominalistic) kind
ad infinitum. Clearly, (c) maximises scope generality: there is no limit to the range
of possible explanans variables it can take, and so no limit to the range of what-
if questions it can answer. However, we do not think this is why the explanation
turning on (c) is better than any of its nominalistic counterparts with a large enough
scope.

To see why, recall that an increase in scope generality is explanatorily valu-
able only to the extent that it covers situations in which we could reasonably be
interested, given the explanandum at stake, and allows us to grasp the explanat-
ory regularities the explanation tries to capture. But we can again increase scope of
the explanatory generalisation non-mathematically well beyond its capacity to cap-
ture the explanatory regularity at stake, well beyond its capacity to answer what-if
questions in which biologists could reasonably be interested, and hence well bey-
ond its capacity to contribute information of explanatory relevance. For example,
a mathematics-free explanation of cicadas’ life-cycles that accommodates every

°Prime numbers maximise their LCM with lower integers in the following sense. Given two
integers p, g, the highest their LCM can be is pq. The LCM of p and each z < p is px iff p is prime.
It is not that a prime number is guaranteed to have a higher LCM with a given lower integer than a
nearby non-prime. After all, the LCM of 13 and 5 is 65, while the LCM of 14 and 5 is 70.

12



duration length up to the age of the universe overshoots in this way. So, the (c)-
explanation is not more explanatory because it maximises scope generality.

The (c)-explanation is more explanatory because it achieves the desired level
of scope generality without compromising cognitive salience. A nominalistic ex-
planation that achieves the desired level of scope generality would be extremely
long and unwieldy, so extracting from it answers to what-if questions would be
difficult, time-consuming, and cognitively opaque to us. In contrast, the number-
theoretic rule makes generating answers to what-if questions very easy and cog-
nitively transparent. (Laplace’s demon might care much less!) It also avoids the
feeling that, though there would be no explanatory gain in answering what-if ques-
tions concerning time periods longer than, say, the age of the universe, there is
something arbitrary about stopping the explanation there (or anywhere else). Per-
haps there is also something misleading about any such limitation, insofar as it
suggests that particular durations of cicada life-cycles are explanatorily relevant,
rather than the relationship between the life-cycle durations and the predator life-
cycle durations. But none of these benefits are due to (c) presenting explanatory
information that cannot be presented nominalistically. They are due to its present-
ing the relevant information in a better way.

We conclude that mathematics’ indispensable contribution to scope general-
ity is a matter of improving cognitive salience. This analysis is not specific to
a number-theoretic explanation, and it applies, mutatis mutandis, to other well-
known examples of distinctively mathematical explanations, such as Euler’s graph-
theoretic explanation of the non-traversibility of Kénigsberg’s bridges, as we demon-
strate in Appendix.

4.2 Topic generality
Recall:
(A) There is no n such that 23/3 = n.

From (A), it is easy to generate further explanations with radically different subject
matters: (A) equally explains why mother couldn’t share twenty-three strawber-
ries between her three children, and why we cannot spend all our pocket money
(twenty-three pence) on three-pence gobstoppers. Despite the variety of subject
matters, when described at the appropriate level of generality, it is clear that these
scenarios are structurally similar: they concern attempts to divide twenty-three
distinct individuals into three equinumerous collections. It is also clear that the
attempts fail for the same reason. To achieve the desired level of generality, we
must formulate the explanatory generalisation so that it concerns no physical ob-
jects in particular. Arithmetic is good way of achieving this. In the counterfactual
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framework the explanatory value of this is naturally analysed in terms of degree of
integration—an explanation’s connectedness to a larger theoretical framework—
discussed in §3.

Is mathematics indispensable for achieving topic generality? It is not clear that
it is. Consider our toy-example again, and (A”), where ‘F’ is initially interpreted
as ‘idea’:

(A”) If there is exactly one F, then we will not be able to divide it
evenly into three collections, andy) if there are exactly two Fs,
then we will not be able to divide them evenly into three collec-
tions... and 23, if there are exactly twenty-three Fs, then we will
not be able to divide them evenly into three collections.

We can increase the topic generality of (A”) by increasing the generality of the
interpretation we give to ‘F”. For example, we can interpret it as ‘idea or strawberry
or penny’, so that (A”) applies to each of the situations described above. We can
even interpret it as ‘distinct individual’ and thereby formulate a non-mathematical
explanation that matches the topic generality of (A). Nevertheless, the explanation
turning on (A) is better because it achieves the desired level of topic generality (and
scope generality) without compromising cognitive salience (cf. §4.1).

This applies to less toy-ish examples. Consider an example from Baker (2017).
Why is it that in fixed-gear bicycles with 14-tooth rear cogs and front cogs with
either 47, 48, or 49 teeth, those with 47 in front minimise the wear on their rear
tire? The best explanation involves the same mathematics as the cicadas case: of
(14, 47), (14, 48), and (14, 49), only the first is a coprime pair, and coprime integers
maximise their LCM with all lower integers. This means that bikes with 47-tooth
front cogs will maximise the number of full pedal-turns required to make the rear
cog (and therefore the rear tire) return to its original position, and so are less likely
to stop on the same patch of tire.

Since this explanation is structurally similar to the cicada case, we can give a
topic general explanation that covers both. Baker (2017) does this by expanding
the core of the cicada explanation so as to include (c) below. But mathematics
is not really required for this integration, which is achieved by the notion of a
unit cycle—a domain-neutral means of talking about things exhibiting periodicity,
temporal, spatial, or otherwise. So, what is mathematics’ contribution? Consider
the following three generalisations on which an explanation for cicadas’ life-cycle
periods can be based, each increasing in topic generality:

(a) Of temporal cycles with periods of 12 to 18 years, those with 13- and 17-
year periods minimise successive co-occurrences of the same pair of cycle
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elements with all cycles with periods shorter than 12 years,

and of temporal cycles with periods of 46 to 49 years, those with 47-year
periods minimise successive co-occurrences of the same pair of cycle ele-
ments with all cycles with periods shorter than 46 years.

(b) Of unit cycles with periods of between 12 and 18 units, those with 13-unit
and 17-unit periods minimise successive co-occurrences of the same pair of
cycle elements with all unit cycles with periods shorter than 12 units,
and of cycles between 46 to 49 units, those with 47-unit periods uniquely
minimise successive co-occurrences of the same pair of cycle elements with
all cycles with periods shorter than 46 units.

(c) Any pair of unit cycles with periods m and n maximises the gap between
successive co-occurrences of the same pair of cycle elements if and only if
m and n are coprime.

Since (a) and (b) both contain two corresponding conjuncts, the explanations turn-
ing on these explanatory generalisations are equally scope-general. While (a) con-
cerns things that have duration (and exhibit periodicity) in time, (b) concerns lin-
early additive things with extension of any kind. Hence, (b) can also be used to
explain the fact that certain fixed-gear bicycles with 47-tooth front cogs maximise
the life of their rear tires, making it considerably more topic-general than (a). Now
consider an explanation turning on (c) and assume for the sake of argument that it
is better than any explanation built on a finite conjunction like (b). This cannot be
because it is more topic-general, since the same level of topic generality is secured
by (b). Rather, it is plausible to say that this is because (c)-explanation allows
us to achieve the desired level of topic generality, and scope generality, without
compromising cognitive salience.

This demonstrates that mathematics is not always required to achieve topic
generality in distinctively mathematical explanations. However, the demonstration
in this case relies on there being linguistic resources to express the generalisation
in a way neutral enough to accommodate all the relevant subject matters. We think
it is plausible that appropriate linguistic resources are available across the board:
the couching of the above generalisations in terms of units (of any magnitude)
and distinct individuals (of any kind) points the way. However, we do not have
the space to demonstrate that this strategy will generalise. So, for the sake of
argument, let us assume that mathematics is sometimes indispensable to expressing
an explanation in a maximally topic-general way, and ask what kind of explanatory
contribution this kind of theoretical integration makes.

From the counterfactual point of view, topic generality—whether or not achieved
with mathematics—only contributes to a particular explanation if it enables the
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answering of more relevant what-if questions concerning that explanation’s ex-
planandum. To see this, note first that there is clearly something odd in thinking
that, for example, biologists in possession of the number-theoretic explanation of
cicada periods could understand cicadas better by reflecting on fixed-gear bicycles.
Assuming it is a good one, the biologists’ explanation is as powerful as it gets, as
far as cicadas are concerned, and no amount of structurally similar applications of
number theory enhances it.

Similarly, suppose we have hitherto been unable to explain why mother can-
not divide twenty-three strawberries between her three children. By learning the
explanatory core of our toy-example, (A), an explanation for why mother fails
presents itself, putting us in a position to answer a range of relevant what-if ques-
tions regarding mother’s predicament. We have integrated two disparate structur-
ally similar phenomena to the arithmetical background theory. This is a good thing.
But the new what-if questions we can now answer (with respect to mother) do not
yield any further explanatory understanding of why the philosopher cannot divide
twenty-three ideas equally between three sections. From a more global perspective,
our stock of answerable what-if questions has increased; but this is only because
we have formulated a new explanation with its own associated what-if questions.
In cases such as these, topic generality is clearly very useful, but it does not itself
increase the explanatoriness of any of the particular explanations.'”

Mathematics often contributes to the presentation of a general theory that uni-
formly treats otherwise disparate subject matters. Integrating different subject mat-
ters in this way often allows new what-if to be asked and answered, or makes such
questions easier to answer, rendering the general theory explanatorily very valu-
able. To the extent mathematics is indispensable for such integration, mathematics
is indispensable to our explanatorily most powerful formal theories and the associ-
ated explanatory practices. But, even so, mathematics’ usefulness as an explanat-
ory resource is still purely a matter of improving cognitive salience. After all, for
any particular explanandum, the range of associated what-if questions that a body
of theory allows us to answer is a measure of the scope generality of the relevant
explanation, and mathematics’ involvement in securing a desirable level of scope
generality is purely that of preserving cognitive salience (cf. §4.1).

0From the perspective of the counterfactual account this is again far from being an idiosyncratic
feature of mathematical explanations. See, e.g. Ylikoski and Kuorikoski (2010: pp. 214-5), who offer
a general discussion of the virtues of formal unification in science without an increase in explanatory
information.
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5 Responses to Possible Objections

Cognitive salience is a purely presentational-cum-pragmatic feature of explana-
tions, so it is tempting to conclude immediately that mathematics’ contribution to
distinctively mathematical explanations does not support platonism. However, we
should proceed with caution. As per our methodological preamble (§3), we aim to
progress the debate without relying on intuitions, and without begging any ques-
tions. In this spirit, we will now consider and rebut three possible objections to our
analysis: that we fail to capture a kind of explanatory depth provided by mathemat-
ics (§5.1); that our analysis of scope generality is unacceptably interest-relative for
the debate at hand (§5.2); and that our analysis of topic generality fails to capture
the notion of unification at play in this debate (§5.3).

5.1 Depth over breadth?

One might object that we have unduly focused on explanatory generality in terms
of an explanation’s scope of application (what we might call explanatory breadth),
and ignored a no less important form of understanding offered by mathematics: that
of picking out a more general feature of reality whose instantiation is responsible
for the explanandum (what we might call explanatory depth). Take the cicada ex-
ample. Any nominalistic generalisation stating which durations minimise intersec-
tions up to some finite limit presents a series of facts about time, revealing a pattern
of dependence between certain time periods and the obtaining of an intersection-
minimisation relation between them. It does not explicitly tell us why these facts
obtain, or why the pattern emerges. One could argue that the number-theoretic
generalisation provides this further understanding. Consider the full generalisation
in terms of which the cicada explanation is typically expressed:

(¢/) If p is any natural number, then p is coprime with every ¢ < p
(and hence maximises its LCM with every ¢ < p) iff p is prime.

This doesn’t just tell us, of each prime number, that it maximises its LCM with
each integer lower than it. It arguably tells us why this pattern holds, by showing
that each of these particular matters of fact (that p; maximises its LCM with each
q < p1, that po maximises its LCM with each ¢ < ps, etc.) obtain in virtue of
a single, more general fact: that all and only prime numbers are coprime with all
lower integers. If this is a genuine explanation, it is a mathematical explanation of
a mathematical fact—an intra-mathematical explanation; but, it could be argued, it
furnishes a deeper understanding of the associated facts about time. Again, we have
a pattern of particular matters of fact—that each of a certain set of time periods
minimises intersection with each time period shorter than itself—and the idea is
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that (c’) reveals that each of these particular facts obtains in virtue of a single,
more general fact, and thus provides a deeper explanation than any nominalistic
alternative. This kind of story can be found in the relevant literature.!!

It appears that the counterfactual analysis we have presented does not have
the resources to capture this kind of depth, and so cannot be relied upon to locate
precisely the contribution made by mathematics in achieving it.!> There are several
issues to address here, however. Firstly, there is the issue of whether locating a
collection of more specific facts as particular instances of a more general fact really
explains them. Secondly, assuming it does, there is the further issue of whether
this kind of explanatoriness can legitimately be appealed to in the EIA debate.
Finally, assuming that it can be appealed to, familiar questions arise regarding the
contribution of mathematics, and, without an independently-motivated framework
to guide us, there appears to be no non-question-begging means of answering these
questions. We will address each of these in reverse order.

Let us assume for now that the kind of depth outlined above is an explanat-
ory virtue, and it is legitimate to appeal to it in the EIA debate. We need to work
out two things: (i) the contribution mathematics makes to the procurement of ex-
planatory depth; and (ii) whether this contribution warrants belief in mathematical
objects. Regarding (i), with respect to the cicadas explanation, the contribution
made by mathematics here does not appear to be an indispensable one, since the
more general fact about time is adequately definable in non-mathematical terms.
We can define ‘coprime’, as it applies to time periods measured in years, as fol-
lows: two time periods ¢ and 9 are coprime if, for each shorter time period (except
for the shared basic unit), successive concatenations of it will not result in a period
congruent to ¢; and a period congruent to ¢ (cf. Rizza 2011). We can then say
that a time period ¢ is prime iff ¢ is coprime with all time periods shorter than t.
Thus, we can claim that the more particular facts about time hold in virtue of the

"Baker (2017: 199) appears to have this in mind when he says that the number-theoretic ex-
planation is deeper than mathematics-free alternatives, because it tells us why there are unique
intersection-minimising periods within some ranges of periods and not others. Pincock (2015) ar-
gues that distinctively mathematical explanations (he calls them abstract explanations) explain by
identifying physical facts as particular instances of more general, abstract facts. Others highlight
cases where the mathematics used to explain what look like very different physical phenomena can
be unified under a more general mathematical method, and argue that this suggests there is a deeper,
mathematical reason lying behind the relevant physical phenomena (e.g. Colyvan 2002 and Baron,
Colyvan, and Ripley 2017). See also §5.3 on unification.

12Baron, Colyvan, and Ripley 2017 develop a counterfactual analysis of mathematical explanation
with an eye to unifying intra- and extra-mathematical explanations, so their account may offer a
means of spelling out this kind of depth counterfactually. Nevertheless, the objections raised in this
section suggest that the ability of rival analyses to capture the relevant kind of depth is not in itself
a reason to prefer them as analyses of the scientific explanatory value of distinctively mathematical
explanations. This applies equally to rival counterfactual analyses.
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more general fact that all and only prime periods are coprime with all time periods
shorter than themselves.

However, if this kind of explanatory depth is widespread in distinctively math-
ematical explanations, then there is no principled reason to think that the math-
ematics will always be dispensable. Indeed, that mathematics is indispensable to
scientific explanation is a mainstay of the EIA debate. But now familiar moves
begin to surface. Nominalists will insist that it is natural to take the more gen-
eral fact in virtue of which the more specific facts obtain to be physical. This is
because it is unclear how particular physical facts might metaphysically depend
on how things stand in Plato’s heaven (e.g. Saatsi 2012). Moreover, explanatory
depth appears to derive from identifying more specific relations as instances of
more general relations, not from identifying more specific relations as instances of
mathematical relations, so the familiar nominalist gambit is dialectically available:
it is mathematical typology that is indispensable, rather than mathematical ontology
(to use Yablo’s 2012: 1021 turn of phrase); mathematics serves (indispensably) to
characterise physical facts at a sufficient level of generality (see also Leng 2013).
This story appears to do no damage to the sense that the relevant kind of explanat-
ory depth has been achieved. In response, platonists are likely to see this story as
unduly optimistic. Perhaps our pre-scientific philosophical convictions about what
can and cannot depend on what do not sit comfortably with scientific practice. But,
then, so much the worse for our philosophical convictions.

While we are more inclined to agree with the nominalist here, we recognise that
there is very little we could do to move the platonist. Clearly, we are back where we
started: an impasse. In line with our running theme, breaking through this impasse
will involve providing a detailed analysis of explanatory depth in the context of
an independently-motivated framework for comparing explanatory virtues. To our
knowledge, no such analysis exists. So, if the kind of depth identified here is an
explanatory virtue, and if it is legitimate to appeal to it in the context of the EIA
debate, then an impasse remains. Thankfully, we shall see that there are reasons to
doubt both ifs.

Regarding the legitimacy of appealing to explanatory depth, we think that this
is a status that must be earned. As we have stressed, the EIA debate is supposed to
have healthy naturalistic credentials. To appeal to the presence of a particular ex-
planatory virtue V' in this debate, one had better be able to show that V' is operative
in science. In other words, one needs to show that, all else equal, scientists are (or
should be) more confident about explanations that exhibit more of V, than they are
(or should be) about explanations that exhibit less of V. It will not be enough to
merely show that scientists find explanations that exhibit V' explanatory, and then
go on to make the conjecture that V' is the reason they do. Baker is guilty of this
move, for example:
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I do not know how to demonstrate that the mathematical component
is explanatory. On the other hand, I think it is reasonable to place the
burden of proof here on the nominalist. The way biologists talk and
write about the cicada case suggests that they do take the mathematics
to be explanatory, and this provides good grounds, at least prima facie,
for adopting this same point of view. (Baker 2009: 625; Lyon 2012:
572 is ‘inclined to agree’.)

This lip-service to naturalism will not suffice. Granted, it seems right that scientists
would consider many explanations involving mathematics more explanatory than
their nominalistic counterparts; but that leaves it completely open as to whether that
is because they are sensitive to what platonists see as mathematics’ contribution to
these explanations (cf. Knowles and Liggins 2016: 3404). This general point ap-
plies directly to the special case of explanatory depth. Until it can be shown that
scientific practice is appropriately sensitive to this feature of distinctively mathem-
atical explanations, appeals to it in support of platonism are not legitimate in the
EIA debate.

Further, in light of our own analysis of the scientific value of explanatory
breadth, as it manifests in distinctively mathematical explanations (cf. §4), there
is reason to doubt that a demonstration of the value of explanatory depth is forth-
coming. Our analysis explains why distinctively mathematical explanations are to
be preferred over their nominalistic alternatives independently of their exhibiting
explanatory depth, and it does so by folding it into a general and independently
well-supported theory of scientific explanation. On our story, the place of dis-
tinctively mathematical explanations in a broader story about the preferences and
standards operative in scientific practice is clear. This analysis sets a high bar. In
light of this, the prospects of developing an analysis that gives central importance
to explanatory depth, and which rivals our own in its naturalistic credentials, appear
dim.

Finally, we turn to the issue of the sense in which explanatory depth is really
explanatory. Even if our own analysis of distinctively mathematical explanations
captures all that is of scientific explanatory value in them, perhaps explanatory
depth is genuinely explanatory in some non-scientific, but no less valuable sense.
Perhaps it provides us with metaphysical understanding. There are a few things to
say about this. Firstly, if explanatory depth offers metaphysical understanding, it
is still unclear what role mathematics plays its procurement. So, for all the reas-
ons presented above, an impasse looms once again. Secondly, whether one finds
explanatory depth metaphysically illuminating will depend on ones background
metaphysics. Explanatory depth is supposedly achieved by showing that particular
matters of fact are instances of some more general matter of fact. But, someone of
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a Humean bent, who takes everything to be grounded in local, particular matters of
fact, is unlikely to think that the depth appealed to here is explanatory. One could,
of course, motivate a metaphysic on which the relevant kind of depth comes out as
explanatory. However, this brings us to our final point. Given the naturalistic cre-
dentials of the EIA debate, one’s reasons for preferring this metaphysic had better
be appropriately scientifically informed. More generally, one’s reasons for appeal-
ing to the provision of metaphysical (as opposed to scientific) understanding in the
EIA debate had better be appropriately scientifically informed. In the absence of
such scientifically-informed reasons, there is no reason as yet to take an appeal to
explanatory depth seriously in the context of the EIA debate.

5.2 Scope generality and interest relativity?

In §3 we argued that the cicada explanation turning on the number-theoretic gener-
alisation offers no explanatory information over and above the information provided
by some finite, mathematics-free generalisation, because, given the explanandum
at stake, we can only reasonably be interested in considering counterfactual scen-
arios up to some finite limit. One might object: we are doing ontology here, and
it is inappropriate to accept or reject ontological theses on the basis of judgements
about what we might (or might not) be reasonably interested in. An explanation
can be objectively better than another on a certain metric regardless of whether we
should find this difference interesting or not. So, perhaps, the number-theory does
yield more explanatory information purely by virtue of its allowing us to answer
more what-if questions than any given mathematics-free alternative.

This objection is dialectically unacceptable. We are supposed to be taking con-
siderations about what is explanatory as a guide to ontology. Though there is evid-
ence that, in many cases, more scope-general explanations are to be preferred to
less scope-general explanations, there is no evidence to suggest that the explanat-
ory value of good formal explanatory frameworks is due to them providing answers
to what-if questions without bounds. In the absence of such evidence, one cannot
dismiss judgements that certain information does not help us understand particular
explananda, on the basis of prior judgements about what is or is not ontologically
significant. To do so gets the dialectic back to front.

5.3 Topic generality and unification?

In §4, we argued that making an explanation more topic general (without thereby
also increasing scope generality or cognitive salience) does not increase its explan-
atoriness. One might object that we have misunderstood the significance of unific-
ation as an explanatory virtue. Granted, rendering an explanation more general (so
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that its topic-independent ‘core’ applies elsewhere) doesn’t help us to understand
the original explanandum better; it does, however, result in a new explanation of a
broader class of phenomena that includes both the original and the new explanan-
dum. For example, by formulating the cicada explanation in terms of unit cycles
and the explanatory-generalisation (UC), arguably Baker (2017) has provided a
new explanation of both cicada life-cycles and the prevalence of certain fixed-gear
bicycle cogs. One can say that the mathematics ‘broadens the explanatory land-
scape rather than improving the original explanation’ (Ylikoski and Kuorikoski
2010: 216). We now have a choice as to whether to adopt this more general explan-
ation of this more general phenomenon, or keep the relevant explanations separate.
We should, ceteris paribus, prefer a more unified theory of the world; so, we ought
to adopt the more topic general explanation.

This line of reasoning is problematic for two reasons. First, it departs from the
naturalistic spirit of EIA. There is no evidence that evolutionary biologists would
prefer (or have any reason to prefer) an explanation that is general enough to ap-
ply to both the cicadas and the fixed-gear bicycles. We suspect that evolutionary
biologists would have little interest in the more general explanation, qua evolution-
ary biologists. If anything, there is reason to think that biologists would prefer a
less general explanation that is more grounded in the specific phenomenon they are
studying. After all, the more general explanation may fudge important distinctions
between the respective domains. In general, making explanations more abstract in
order to increase integration between disparate areas of inquiry sometimes results
in a loss of important domain-specific detail, resulting in a loss of other explanatory
virtues, such as factual accuracy, or cognitive salience (cf. Ylikoski and Kuorikoski
2010: 213-214).

This brings us to the second reason. We suspect that, lurking behind the pla-
tonist’s argument from unification is an allegiance to a defunct Quinean way of
thinking: that we ought to commit to all those things talk of which is indispensable
to our simplest, most unified theory of the world. We started by asking whether
including mathematics in the cicada explanation makes for a better explanation of
cicada life-cycles; now we are asking which explanations ought to comprise our
best unified world-view. In other words, the goal posts have moved. The whole
motivation for appealing to particular explanations is to avoid resting the case for
platonism on the Quinean doctrine of confirmational holism, which is both im-
plausible and highly controversial. Yet, arguing in the above manner clearly relies
on this principle. Even if we grant that mathematics is crucial for making our over-
all worldview as simple and unified as possible, we are only then forced to accept
platonism if we also adhere to the view that empirical data confirms all parts of this
overarching theory.
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6 Conclusion

The current debate on EIA hangs on the question of whether mathematics is it-
self explanatory of empirical phenomena. Platonists have argued for more than
a decade that it is by claiming that mathematics makes certain explanations bet-
ter than nominalistic alternatives by making them more general. Nominalists have
accepted that mathematics is indispensable for some of our best empirical explan-
ations, but maintained that this is due to the indispensable expressive role played
by mathematics. Platonists, on the other hand, maintain that it is difficult to see
what (non-mathematical) features of reality could be expressed by the mathemat-
ics that is thus indispensable. Both sides in this somewhat deadlocked debate share
the critical assumption, ETR, that the source of explanations’ explanatory power
is purely a matter of its correctly representing explanatory features of reality. Our
analysis of mathematics’ contribution to the explanatory virtues of mathematical
explanations, within the counterfactual framework, shows what’s wrong with ETR:
explanations can become more explanatory without accurately representing further
explanatory features of reality.

According to the counterfactual account, explanatory power is a measure of
how much modal explanatory information it provides to an explainer. This is a
function both of the amount of such information the explanation provides about
the relevant worldly features, and of the way in which this information is presen-
ted. We take it as obvious that only increases in information about the explanat-
orily relevant worldly features—objective explanatory dependences—as opposed
to changes in how such information is presented, stand a chance of securing fur-
ther ontological commitments. Our analysis of some of the key exemplars of dis-
tinctively mathematical explanation, displaying striking scope and topic general-
ity, shows that mathematics does not yield an increase in this kind of ontologically
committing explanatory information. Its role is rather that of improving cognitive
salience. From the perspective of the counterfactual account we thus get a clear ver-
dict on the ontological question at stake in EIA: mathematics’ indispensable role
in empirical explanations provides no reason to believe in mathematical objects.

There is some scope to resist our analysis of mathematics’ contribution, e.g. by
arguing that there is a further, scientifically kosher dimension of explanatory depth
that our analysis doesn’t capture (cf. §5.1), or by claiming that mathematics’ max-
imising scope generality can in itself be explanatorily valuable in a way that mat-
ters to science (cf. §5.2). Any such claim needs to be accompanied by evidence
that avoids the kind of intuition-trading and foot-stomping that we have sought to
avoid by working within a well-founded theory of scientific explanation. As far
as we can see, the only way to do this would be to motivate an alternative ac-
count of mathematics’ contribution to distinctly mathematical explanations within
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an equally well-supported theory of explanation.

Appendix

Here we show how our analysis applies to the much discussed Konigsberg ex-
planation.'> Why is it impossible to make a round-tour of the old Konigsberg,
crossing each of its seven bridges exactly once? We are looking for explanatory
generalisations applicable, e.g., to the bridges at 18th c. Konigsberg, connecting
four landmasses (‘islands’). Let’s call a bridge system ‘even’ iff each island has
0, 2,4, 6, 8, 10, or 12 bridges to/from it. If a bridge system is not even, and has
no more than 13 bridges to/from it, call it ‘odd’. Now consider the following true
explanatory generalisations:

(a) Of all bridge systems connecting exactly four islands, with at most two
bridges between any two islands, all and only the even ones are tourable.

(b) Of all bridge systems connecting up fo five islands, with at most three bridges
between any two islands, all and only the even ones are tourable.

(c) A bridge system connecting any number of islands is tourable if and only it
is Eulerian.

Only (a) and (b) above are nominalistically acceptable, but clearly explanatory
generalisations of this ilk, expressible in first-order logic, can be extended ad infin-
itum, by expanding both the number of islands covered and the number of bridges
connecting any two islands.'* In the spirit of §4.1 we maintain that there is no
in-principle problem with using such generalisation to capture the explanatory de-
pendence between the binary explanandum variable (tourable, non-tourable) and
the binary explanans variable (even, odd). For reasons given in §4.1 and §5.2, we
maintain that one’s explanatory understanding of the tourability of Konigsberg’s
bridges would not get any better by reflecting on possible bridge systems where
the number of islands and/or bridges exceeds the number of atoms in Kénigsberg,
for example.

Having said that, clearly (c) underwrites the best explanation. But this is only
because (c)-explanation achieves the desired level of scope generality without com-
promising cognitive salience. In this case a nominalistic explanatory generalisa-
tion, along the lines of (a) and (b), looks simple on the face of it: of all bridge

BOur discussion is adapted from Jansson and Saatsi (forthcoming).

“Figuring out that there is a given true generalisation along the lines of (a) and (b) is exponen-
tially (or factorially!) hard work by non-mathematical means. But this is a matter of pragmatics of
justification of explanatory generalisations, and does not speak against nominalism (Saatsi 2011).
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systems connecting n islands, with at most m bridges between any two islands,
all and only the even ones are tourable. Defining ‘even’ by nominalistic means
becomes rather long and unwieldy, however. Also, (c) avoids the feeling that there
is something arbitrary about stopping the explanation to any particular number of
islands and bridges. But none of these benefits are due to (c) presenting explan-
atory information that cannot be presented nominalistically. They are due to its
presenting the relevant information in a better way.
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